Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Nat Microbiol ; 9(3): 751-762, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38326571

ABSTRACT

Infection with Lassa virus (LASV) can cause Lassa fever, a haemorrhagic illness with an estimated fatality rate of 29.7%, but causes no or mild symptoms in many individuals. Here, to investigate whether human genetic variation underlies the heterogeneity of LASV infection, we carried out genome-wide association studies (GWAS) as well as seroprevalence surveys, human leukocyte antigen typing and high-throughput variant functional characterization assays. We analysed Lassa fever susceptibility and fatal outcomes in 533 cases of Lassa fever and 1,986 population controls recruited over a 7 year period in Nigeria and Sierra Leone. We detected genome-wide significant variant associations with Lassa fever fatal outcomes near GRM7 and LIF in the Nigerian cohort. We also show that a haplotype bearing signatures of positive selection and overlapping LARGE1, a required LASV entry factor, is associated with decreased risk of Lassa fever in the Nigerian cohort but not in the Sierra Leone cohort. Overall, we identified variants and genes that may impact the risk of severe Lassa fever, demonstrating how GWAS can provide insight into viral pathogenesis.


Subject(s)
Lassa Fever , Humans , Lassa Fever/genetics , Lassa Fever/diagnosis , Lassa Fever/epidemiology , Genome-Wide Association Study , Seroepidemiologic Studies , Lassa virus/genetics , Fever , Human Genetics
2.
PLoS Biol ; 18(2): e3000611, 2020 02.
Article in English | MEDLINE | ID: mdl-32045407

ABSTRACT

Unusually large outbreaks of mumps across the United States in 2016 and 2017 raised questions about the extent of mumps circulation and the relationship between these and prior outbreaks. We paired epidemiological data from public health investigations with analysis of mumps virus whole genome sequences from 201 infected individuals, focusing on Massachusetts university communities. Our analysis suggests continuous, undetected circulation of mumps locally and nationally, including multiple independent introductions into Massachusetts and into individual communities. Despite the presence of these multiple mumps virus lineages, the genomic data show that one lineage has dominated in the US since at least 2006. Widespread transmission was surprising given high vaccination rates, but we found no genetic evidence that variants arising during this outbreak contributed to vaccine escape. Viral genomic data allowed us to reconstruct mumps transmission links not evident from epidemiological data or standard single-gene surveillance efforts and also revealed connections between apparently unrelated mumps outbreaks.


Subject(s)
Disease Outbreaks , Genome, Viral/genetics , Mumps virus/genetics , Mumps/epidemiology , Mumps/transmission , Genotype , Humans , Molecular Epidemiology , Mumps/virology , Mumps virus/classification , Mutation , Phylogeny , Sequence Analysis, DNA , United States/epidemiology , Vaccination/statistics & numerical data , Viral Proteins/genetics
3.
N Engl J Med ; 379(18): 1745-1753, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30332564

ABSTRACT

During 2018, an unusual increase in Lassa fever cases occurred in Nigeria, raising concern among national and international public health agencies. We analyzed 220 Lassa virus genomes from infected patients, including 129 from the 2017-2018 transmission season, to understand the viral populations underpinning the increase. A total of 14 initial genomes from 2018 samples were generated at Redeemer's University in Nigeria, and the findings were shared with the Nigerian Center for Disease Control in real time. We found that the increase in cases was not attributable to a particular Lassa virus strain or sustained by human-to-human transmission. Instead, the data were consistent with ongoing cross-species transmission from local rodent populations. Phylogenetic analysis also revealed extensive viral diversity that was structured according to geography, with major rivers appearing to act as barriers to migration of the rodent reservoir.


Subject(s)
Genome, Viral , Lassa Fever/virology , Lassa virus/genetics , RNA, Viral/analysis , Adolescent , Adult , Animals , Bayes Theorem , Disease Reservoirs , Female , Genetic Variation , Humans , Lassa Fever/epidemiology , Lassa Fever/transmission , Male , Markov Chains , Middle Aged , Nigeria/epidemiology , Phylogeny , Phylogeography , Rodentia , Sequence Analysis, RNA , Zoonoses/transmission
4.
Science ; 360(6387): 444-448, 2018 04 27.
Article in English | MEDLINE | ID: mdl-29700266

ABSTRACT

Mitigating global infectious disease requires diagnostic tools that are sensitive, specific, and rapidly field deployable. In this study, we demonstrate that the Cas13-based SHERLOCK (specific high-sensitivity enzymatic reporter unlocking) platform can detect Zika virus (ZIKV) and dengue virus (DENV) in patient samples at concentrations as low as 1 copy per microliter. We developed HUDSON (heating unextracted diagnostic samples to obliterate nucleases), a protocol that pairs with SHERLOCK for viral detection directly from bodily fluids, enabling instrument-free DENV detection directly from patient samples in <2 hours. We further demonstrate that SHERLOCK can distinguish the four DENV serotypes, as well as region-specific strains of ZIKV from the 2015-2016 pandemic. Finally, we report the rapid (<1 week) design and testing of instrument-free assays to detect clinically relevant viral single-nucleotide polymorphisms.


Subject(s)
Bacterial Proteins/chemistry , CRISPR-Associated Proteins/chemistry , Dengue Virus/isolation & purification , Dengue/diagnosis , Endonucleases/chemistry , Enzyme Assays , RNA, Viral/analysis , Zika Virus Infection/diagnosis , Zika Virus/isolation & purification , Adaptation, Physiological/genetics , Dengue Virus/genetics , Humans , Microcephaly/diagnosis , Microcephaly/virology , Polymorphism, Single Nucleotide , Zika Virus/genetics
5.
Nature ; 546(7658): 401-405, 2017 06 15.
Article in English | MEDLINE | ID: mdl-28538723

ABSTRACT

Zika virus (ZIKV) is causing an unprecedented epidemic linked to severe congenital abnormalities. In July 2016, mosquito-borne ZIKV transmission was reported in the continental United States; since then, hundreds of locally acquired infections have been reported in Florida. To gain insights into the timing, source, and likely route(s) of ZIKV introduction, we tracked the virus from its first detection in Florida by sequencing ZIKV genomes from infected patients and Aedes aegypti mosquitoes. We show that at least 4 introductions, but potentially as many as 40, contributed to the outbreak in Florida and that local transmission is likely to have started in the spring of 2016-several months before its initial detection. By analysing surveillance and genetic data, we show that ZIKV moved among transmission zones in Miami. Our analyses show that most introductions were linked to the Caribbean, a finding corroborated by the high incidence rates and traffic volumes from the region into the Miami area. Our study provides an understanding of how ZIKV initiates transmission in new regions.


Subject(s)
Zika Virus Infection/epidemiology , Zika Virus Infection/virology , Zika Virus/genetics , Aedes/virology , Animals , Caribbean Region/epidemiology , Disease Outbreaks/statistics & numerical data , Female , Florida/epidemiology , Genome, Viral/genetics , Humans , Incidence , Molecular Epidemiology , Mosquito Vectors/virology , Zika Virus/isolation & purification , Zika Virus Infection/transmission
6.
Nature ; 546(7658): 411-415, 2017 06 15.
Article in English | MEDLINE | ID: mdl-28538734

ABSTRACT

Although the recent Zika virus (ZIKV) epidemic in the Americas and its link to birth defects have attracted a great deal of attention, much remains unknown about ZIKV disease epidemiology and ZIKV evolution, in part owing to a lack of genomic data. Here we address this gap in knowledge by using multiple sequencing approaches to generate 110 ZIKV genomes from clinical and mosquito samples from 10 countries and territories, greatly expanding the observed viral genetic diversity from this outbreak. We analysed the timing and patterns of introductions into distinct geographic regions; our phylogenetic evidence suggests rapid expansion of the outbreak in Brazil and multiple introductions of outbreak strains into Puerto Rico, Honduras, Colombia, other Caribbean islands, and the continental United States. We find that ZIKV circulated undetected in multiple regions for many months before the first locally transmitted cases were confirmed, highlighting the importance of surveillance of viral infections. We identify mutations with possible functional implications for ZIKV biology and pathogenesis, as well as those that might be relevant to the effectiveness of diagnostic tests.


Subject(s)
Phylogeny , Zika Virus Infection/transmission , Zika Virus Infection/virology , Zika Virus/genetics , Zika Virus/isolation & purification , Animals , Brazil/epidemiology , Colombia/epidemiology , Culicidae/virology , Disease Outbreaks/statistics & numerical data , Genome, Viral/genetics , Geographic Mapping , Honduras/epidemiology , Humans , Metagenome/genetics , Molecular Epidemiology , Mosquito Vectors/virology , Mutation , Public Health Surveillance , Puerto Rico/epidemiology , United States/epidemiology , Zika Virus/classification , Zika Virus/pathogenicity , Zika Virus Infection/diagnosis , Zika Virus Infection/epidemiology
8.
R Soc Open Sci ; 3(9): 160526, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27703713

ABSTRACT

Son preference predominates in China, yet there are patterned exceptions to this rule. In this paper, we test whether lineality (patrilineal versus matrilineal inheritance and descent) is associated with son versus daughter preference among the ethnic Mosuo (Na) of Southwest China. Our results show (i) an increased probability of continued fertility among matrilineal women after having a son compared with a daughter and (ii) an increased probability of continued fertility among patrilineal women after having a daughter compared with a son. These results are consistent with son preference among patrilineal Mosuo and more muted daughter preference among the matrilineal Mosuo. Furthermore, we show (iii) the lowest probability of continued fertility at parity 2 once women have one daughter and one son across both systems, suggesting that preferences for at least one of each sex exist alongside preferences for the lineal sex. The Mosuo are the only known small-scale society in which two kinship systems distinguish sub-groups with many otherwise shared cultural characteristics. We discuss why this, in conjunction with differences in subsistence, may shed light on the evolutionary underpinnings of offspring sex preferences.

SELECTION OF CITATIONS
SEARCH DETAIL
...